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LOCATING THE DISCONTINUITIES OF A BOUNDED FUNCTION
BY THE PARTIAL SUMS OF ITS FOURIER SERIES I: PERIODICAL
CASE

GEORGE KVERNADZE, THOMAS HAGSTROM, AND HENRY SHAPIRO

ABSTRACT. A key step for some methods dealing with the reconstruction of a function
with jump discontinuities is the accurate approximation of the jumps and their loca-
tions. Various methods have been suggested in the literature to obtain this valuable
information.

In the present paper, we develop an algorithm based on identities which determine the
jumps of a 27-periodic bounded not-too-highly oscillating function by the partial sums of
its differentiated Fourier series. The algorithm enables one to approximate the locations
of discontinuities and the magnitudes of jumps of a bounded function. We study the
accuracy of approximation and establish asymptotic expansions for the approximations
of a 27-periodic piecewise smooth function with one discontinuity. By an appropriate
linear combination, obtained via derivatives of different order, we significantly improve
the accuracy. Next, we use Richardson’s extrapolation method to enhance the accuracy
even more. For a function with multiple discontinuities we establish simple formulae
which “eliminate” all discontinuities of the function but one. Then we treat the function
as if it had one singularity following the method described above.

1. INTRODUCTION

It is well known that the main difficulty in applying a Fourier series as a tool for approx-
imating a discontinuous function is the Gibbs phenomenon. Namely, the approximation
of a function by the n-th partial sum of its Fourier series is only of order O(1/n) for each
point of continuity of the function and oscillations are O(1) in an O(1/n) neighborhood
of the discontinuity point.

Two distinct approaches to resolve this difficulty have been suggested in the literature.
The first is to reduce the oscillatory behavior by filtering. The second is to use step func-
tions to reconstruct the discontinuous function. The latter approach was first suggested
by Gottlieb et. al. [17] and has been further developed in [1], [2], [5], and [16]. The key
step in the method of reconstruction suggested in [5] is the accurate approximation of
the location and the jumps of a given function.
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Later, Eckhoff [10], [11] considered a different approach to locate the discontinuities
using Prony’s method. As a result he developed an efficient method of approximating
the locations of singularities and the jumps of a piecewise smooth function with multiple
discontinuities. The approximations are found as the solution of a system of algebraic
equations.

To justify the importance of allocating the discontinuities and the jumps of a function,
let us give a brief review of the idea of reconstruction of a function from its truncated
Fourier series as developed in the above mentioned papers.

Let g be a 2n-periodic function which is piecewise smooth on the period with a finite
number, M, of jump discontinuities. In addition, we assume that the first 2n + 1 Fourier
coefficients of the function are known. If G(8) = (7 —6)/2, 8 € (0,27), is the 27-periodic
sawtooth function, then the assumption that the function g is piecewise smooth on [—, 7]
with a finite number of singularities is equivalent to the following representation of the
function:

1 M-l _
(1) 9(8) = = 3_ [s}nG(8 — 6) + 3(6),
m=0
where 0,, and [g]m, m = 0,1,... ,M — 1, are the locations of discontinuities and the

associated jumps of the function g, and § is a 2x-periodic continuous function, which is
piecewise smooth on [—,x].

Hence, the problem is to find a good approximation for the constants 8, and [g]nm,
given the first 2n + 1 Fourier coefficients of the function g. Then g can be recovered from
the partial sums of its Fourier series based on identity (1) and the undesirable Gibbs
phenomenon could be avoided.

Recently another approach to recovery a piecewise smooth function was suggested by
Geer and Banerjee. (See [4], [13], and [14].) The authors introduced a family of periodic
functions with “built-in” discontinuities to reconstruct a piecewise smooth function with
exponential accuracy. The main assumption of the method is knowledge of the jumps and
the locations of discontinuity of the given function. To find these, the authors suggested
the following: use the well-known formula of symmetric difference of the partial sums
of Fourier series which determines the jumps of a bounded function to obtain the first
estimate for the location of discontinuities; then utilize the modified least-squares method
to improve the accuracy of approximation. It should be mentioned that a method for
the recovery of a piecewise smooth function with exponential accuracy, utilizing the
Gegenbauer polynomials, was developed in a series of papers by Gottlieb and Shu (see
[18] and the indicated references). But again, the authors assume some knowledge of the
location of the singularities of the function.

In the present paper, we consider an essentially different approach for the approxima-
tion of the points of discontinuity and the jumps of a function based on special formulae
determining the jumps of a bounded not-too-highly oscillating function by the partial
sums of its differentiated Fourier series. It is shown that the largest local maximum of
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the absolute value of the differentiated partial sums of the Fourier series occur in the
vicinity of the actual points of discontinuity of the function. Furthermore, for a piece-
wise smooth function with one jump discontinuity, we establish asymptotic expansions
for the approximations of the location of the discontinuity and the magnitude of the
jump. Utilizing the expansion formulae, we use Richardson’s extrapolation method to
achieve higher accuracy. For a function with multiple singularities, we establish simple
formulae which “eliminate” all discontinuities of the function but one. Then we treat the
modified function as if it had only one discontinuity, using the method described above.

2. DEFINITIONS

Throughout this paper we use the following general notations: N, Z,, Z, and R are the
sets of positive integers, nonnegative integers, integers, and real numbers, respectively.
Lla,b] is the space of integrable functions. W/a,] is the space of functions on [a,}]
which may have discontinuities only of the first kind and are normalized by the condition

g(0) = (g(6+) + g(6-))/2, 8 € (a,b). (Here, and elsewhere, g(6+) and g(6—) mean the
right and left hand-side limits of a function g at a point 8, respectively). Cla,b] is the
space of continuous functions on [a, b] with uniform norm ” et} By C?la,b], p € N,
we denote the space of p-times continuously differentiable functions on |a, b].

All functions below are assumed to be 27-periodic with the obvious exceptions.

Ifge L[—7r 7], then g has a Fourier series with respect to the trigonometric system
{1,cosnb,sinnf}= |, and we denote the n-th partial sum of the Fourier series of g by

n(ga 6)) 1.e. *)

n=1?

Sn(g;6) = i (ax(g) cos k6 + bi(g)sin k6),

where

ar(g) = %/_:g('r) coskrdr and bi(g) = %fﬁ g(7)sinkrdr

are the k-th Fourier coefficients of the function g.
By 5.(g;6) we denote the n-th partial sum of the conjugate series, i.e.,

Sn(g;6) = Zn:(a.k(g) sin k6 — bi(g) cos k6).

k=1
Correspondingly, by § we denote the conjugate function, i.e.,

mg(6+7)—g(6 —
2tan 7

§(6) = hm{—— T)df},

which exists and is finite almost everywhere for any g € L[—n, n] (cf. [19, Theorem, p.
79)).

By K we denote positive constants, possibly depending on some fixed parameters and
in general distinct in different formulae. For positive quantities A, and B,, possibly
depending on some other variables as well, we write A, = o(B,), 4. = O(B,), or
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Ay~ By, iflimy oo An/By = 0, sup, ey An/Bn < 00, or K1 < An/B, < K, respectively,
where K; > 0 and K; > 0 are some absolute constants.

Definition. Let A = (A;)f2; be a nondecreasing sequence of positive numbers such
that

=21
(2) Z=: N
A function f is said to have A-bounded variation on [a,b], i.e., f € ABV]a,b], if
|f(ar) = F(bi)l _
Z

k=1 Ak

where II is an arbitrary system of disjoint intervals (ax, bx) € [a, b].

We say that a function f is of harmonic bounded variation on [a,b],i.e., f € HBV|a,}],
if \x =k, k€ N.

Remark 1. For a reader unfamiliar with ABV|a, b] classes of functions we give some
basic properties of these classes.

The A-variation “measures” the total oscillation of a bounded function. ABV|a,b]
is a generalization of Vla,d], the class of functions of bounded variation (obviously
ABV][a,b] = Vl]a,b]if Ay =1, k € N).

Waterman [23, p. 108] mentioned that the inclusion

(3) ABVla,b] C W]a, ]

holds for any ABV]|a, b] class of functions.

It is known as well [22, Theorem 3, p. 114] that for 'BV|a,b] and ABV([a,b] Wa-
terman’s classes of functions, defined by the sequences I' = (v;)§%, and A = (A2)2,,
respectively, the inclusion ABV{a,b] C I'BV|a,b] holds if and only if 37_; 1/v =
O(Ez:l l/Ak)

The constraint on the sequence A is natural, since if series (2) converges, ABV|a, b] =
Bla, b}, where Bla, b] is the class of all bounded functions on {a, b]. This makes it clear that
the HBV{a,}] class is sufficiently wide and “almost” covers Bla,b], since A = (k)2
converges for any € > 0. O

If there is no ambiguity, we shall usually suppress the dependence on the domain and
simply write C, ABV, etc.

3. MAIN IDENTITIES

The identity determining the jumps of a function of bounded variation by means of
the partial sums of its Fourier series has been known for a long time:
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Theorem 1 ([8] and [12]). Let g € V. Then the ideniity

(4) lim 5 (g :9)

n—00

= ~(s(6+) - 9(6-))
is valid for each fized 8 € [—7, 7).

Golubov [15] generalized identity (4) for Wiener’s [24] V}, classes of functions and higher
derivatives of the partial sums of Fourier and conjugate series. Further generalizations,
extending the results of Golubov to ABV classes of functions, have been obtained by one
of the authors.

Theorem 2 ([20)). Letr € Z, and suppose ABV is the class of functions of A-bounded
variation determined by the sequence A = (Mi)j,. Then
a) the identity

) 57(12r+1)(g; 6) (_1)r
(5) nl.lglo n2r+1 - (27. + 1),,

(9(6+) — g(6-))
is valid for every g € ABV and each fized 6 € [—7, 7] if and only if
(6) ABV C HBV.

b) There is no way to determine the jump at the pomt 6 € |—7,7] of an aerbitrary function
g € ABV by means of the sequence (S“”(g, 6))

n=0"

Theorem 3 ([20]). Let r € N and suppose ABV 1is the class of functions of A-bounded
variation determined by the sequence A = (A¢)52,. Then
a) the identity

S(27)( - _13yr+l
¢ tim 26D CV 1) gy

is valid for every g € ABV and each fized 6 € [—m, 7] if and only if condition (6) holds.
b) There is no way to determine the jump at the point § € [—7, 7] of an arbitrary function

g € ABV by means of the sequence (S(2T Ng; 0))

Remark 2. Theorems 2 and 3 (see {20, Theorems 1 and 4]) implicitly include the
following statement: if g € C N HBV, then the convergence of (5) and (7) to zero is
uniform with respect to § € [—7,x]. O

Furthermore, as a simple corollary from Theorems 2 and 3 follow the identities which
determine the jumps of the derivatives of a continuous function.
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Corollary 1. Letr € N and v — p be a positive odd number, and suppose g € CP~! is
such that g®) € HBV. Then the identity

(")(g; —1)=
® T
is valid for each fized § € [—7, x].
Proof. By virtue of (3), g € HBV ¢ W. Hence
(9) 5%(g:6) = ST7(¢®;6)

for r > p. Then identity (8) instantly follows from (9) and Theorem 2. O
The following statement is proved similarly.

(gP(6+) - ¢P(6-))

Corollary 2. Letr € N and r — p be a positive even number, and suppose g € CP~! is
such that g?) € HBV . Then the identity

_ §0(g;6) _ (-1)F!
(10) 7}1»2[010 n'-? - (T—‘p)ﬂ'

is valid for each fized 6 € [—7, 7).

(9P(8+) - 9(6-)

4. PRELIMINARIES

In what follows we need the following additional notations.

By 0 = 0m(g) and [g]m = 9(6m+) — 9(fm—), m = 0,1,... ,M — 1, we denote the
points of discontinuity and the associated jumps of a function g € W. By M = M(g) we
denote the number of discontinuities (finite or infinite) of the function g € W.

For a fixed p€ Z;,r € N, and g € L we set

(r—p)r { (-1)=57 8 (g;6) ifr —pis odd
11 DT.(p;r;9;0 . ! ’

(11) (pirigi0) = n P (- )"‘2 15'(’)(9;0) if r — p is even.

For a fixed p € Z;,r € N, and M € N, the points 8,.(p;r;9;n), m =0,1,... ,M -1,
are defined via the following condition:
(12)  |DTu(pi7;9;0m(pi T gim))| = max{|DTo(p;7; 9;0)| : 6 € B(0m; A(9))},
where B(6,;A(g)) is the closed ball around 8., with the radius A(g) = 3 min{|6, —
0i| mod 27 : m,k=0,1,... ,M —1 and m # k}.

To simplify notations, we sometimes omit fixed parameters and write DT,,(6), DT,(g; ),
or DT,(r;g;8). Similarly we simplify the notation for 6,,(p;7; g;n).

By G(0) = (7 —6)/2, 8 € (0,27), we denote the 27-periodic extension of the sawtooth
function. If ¥ € R, then following the notations in [11] we set

G(1;6) =G0 —v) and Gip(y;0) = / Gi(y; 6)d6
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for k € Z,, where Gy = G and the constants of integration are successively determined
by the condition

/r Gi(vy;T)dr = 0.
It is trivial to check that

' " sinkf) 1
(13) &«xmz(zj ) _ D)L,
k=1 k 2
where
n sin (n+%)6
(14) D, (0) = ! + Z cos kf = 2sin-§ for 6 ¢ 2n 2,
2 = n+% for 6 € 272

is the Dirichlet kernel.

Lemma 1. Let r € N be fized. Then

a) the closed form of the following sum ezists:

o) YRS EUPRU W S
= r+1 2 12 ’

where the last term contains either n or n°.

b) The following ezpansion holds for everya—1€ N:

ol 11 11
= 1) — ——_=
kgl kr+1 r+1) rn™  2n 1!
: B, T(r+s) 1 1
16 —1)-! — ),
( ) + s2=:2( ) (23)! 1“(,,. + 1) nTts (nr+a+1 )
where ((7) = X2, k77, 7 > 1, is the Riemman zeta function, T' is the Gamma function

and B;, s € N, are Bernoulli numbers.

Statement a) of the lemma can be found in [9, p. 1]. Using the Laplace method,
the proof of expansion (16) is a simple corollary of the integral representation of the
Hurwitz zeta function [3, Theorem 12.2, p. 251] and Watson’s lemma [6, p. 253]. It was
generously offered by Prof. E. Coutsias [7].

Lemma 2 (Bernstein’s inequality). If T, is a trigonometric polynomial of degree n €
N, then
27mn

T i) <
1 Tallen < 53—

N Tl a5

where [a,b] C [—7, 7).
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Lemma 3. Let a function g € C? be such that g9 € V. Then
a) § € C7! and U=V € Lip o for all a € (0,1), i.e., |g0D(8) — V()| < K|§ —7|*

for some K >0 and all 6,7 € R.
b) The following estimates hold:

(17) Ral9), Balg) = o( ),

where Ro(9) = ||Sa(9;-) — gllj-rm and Ra(g) = |5a(g; ) = §llj-nm, n € N.

Proof. Statement a) can be found in [19, exercise 3, p. 81]. As regards statement b),
by virtue of Hélder’s inequality, since g € C9, we have:

Ral0) Bule) < 3ol + ) = 3 AT
(18) < (5 a) " (Beuter +uigom)
Meanwhile, it is known [21] that if g € C NV, then
(19) 5= ax(a) + o)) = of )

Now (17) follows as a simple combination of (16), (18), and (19). O
The following are some basic properties of the function D{)(8), r € N.

Lemma 4. Let @, = p,(r) > 0 and v, = ¢n(r) > 0 be the closest nonzero roots to the
point zero of the equations D*")() = 0 and D{¥+1)(8) = 0, respectively. Then for any
fizedr € Z, :

a’) Pn € (2%7% .

b) $n € (£, 5).

C) (_1)r+1D,(12r+1)(<Pn) ~ p2rt2

d) (=1)"*1 D +1)(8) is increasing on [—@n(r + 1), on(r + 1)), concave on [—p,(r + 1),0]
and convez on [0, p,(r + 1)].

e) (—1)"D?)(8) is o 2n-periodic even and smooth function with the global mazimum
attained at § = 0. In addition, the sequence of the absolute values of the local mazima s
decreasing as a function of § € [0, 7] and

(20) IDER(0)] > K(r)IDE (),
where K(r) > 1 andn € N.
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Proof. a) Let us prove the statement for an even n, i.e., n = 2n. By (14) we have

. n—1 2n k
sign D )(%) = sign ((—1)r (Z k*" cos I;—: + > k¥ cos 5%
k=1 k=n+1

o kw2 (2n — k)7
_ . 1y 2r P AYL -
= sign (( 1) (;?:1 k" cos o + kz=0(2n k)*" cos 5 ))

= sign ((<1) [ (¥ - (20 — K)*) cos T~ (ny”
(o (& "))

k=1 7
(21) = sign(-1)"t%.

Again by (14), signD{*"(6) = sign(—1)" for n € N and 8 € [0,7/4n]. The latter com-
bined with (21) and the Mean Value Theorem instantly guarantees @, € (7/4n,7/2n).
Similarly we treat the case when n is odd.

b) The statement is proved analogously and we omit the details.
c) According to (14) and (15)

(22) (—1)T+1D$l2r+1)(6) = z E2H1 sin k@ < Z k2r+1 ~ n2r+2.

k=1 k=1

Meanwhile, since @, € [7/2n,n/n] (see a)), taking into account the well-known inequality
20/m < sinf < 6 for 6 € [0,7/2], we have

" o [2/2 | B/2)
(23) Z k> sin (k) > = z B, > — Z k¥t o~ it
k=1 T k=1 L

where [a] means the integer part of a number a. Combination of (22) and (23) completes
the proof of statemant c).

d) Since the function (—1)"t!D{™+2)(6) is positive on [—pn(r 4 1), pa(r + 1)] (see (14)),
(—1)"*1 DZ*+1)(4) is monotonic on the interval. Furthermore, (—1)+1D DEr+3)(8) is pos-
itive and negative on [—%n(r + 1),0] and [0,%.(r + 1)], respectively. But p.(r + 1) <
¥n(r+1) (see a) and b)). Hence (—1)"+! D{2+1)(8) is concave and convex on [—¢,(r+1),0]
and [0, p.(r + 1)], respectively.

e) Let us prove inequality (20) as the rest of the statement is trivial. It is clear that

(24) gn = ik"’" ( Xn: k2’)_ >1

k=1 k>n/4

for n > 4. But by virtue of (15), limp .o gn > 1 as well. The last combined with (24)
implies the existence of K(r) such that

(25) g, > K(r)>1
for n > 4.
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=2} b
o I\ /\ VAN . U .. .. S .4 /\ P ..
A, VAV A G
_2 -1
_4 -4
—6} n
5] 1 = = a 5 6
FIGURE 1. n = 16.
Besides
ID.,(12T)(¢11)! = | ( Z + Z ) k*" cos ki
kyn€[r/2,3n/2] kyn#(r/2,37/2]
(26) < > K,

k>nf4

since v, satisfies the estimate b) and the sums in (26) have different signs. The rest
instantly follows from (24)-(26), and the identity D{*"(0) = (—1)" £7_, k*. Validity of
(20) for n < 4 is trivial. O

5. GENERAL IDEA OF ALGORITHMS AND THE ACCURACY OF APPROXIMATIONS

This is the general idea of all the following algorithms: according to identities (5) and
(7), if g € HBYV, then for a fixed r € N, p = 0, and sufficiently large n € N, the
function |DT,(8)|, 6 € [—7, ], (see (11)) must attain the largest local maximum nearby
the actual points of discontinuity of the function g, since at the the points of countinuity
of g, DT,(6) = o(1) by virtue of Theorems 2 and 3. (The proof of Theorem 4 includes
a rigorous proof of this statement.) Hence we search for the singularity locations of a
function by locating the largest local spikes of the differentiated partial sums of its Fourier
series.

Figures 1-4 represent the graphs of the normalized differentiated partial sums %S;(g; )
of the function (65) with increasing n. They illustrate the dynamics of creation of sharp
spikes in the vicinity of the actual points of discontinuities of the function.
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FIGURE 2. n = 32.

FIGURE 3. n = 64.
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FIGURE 4. n = 128.

Now we study how well the points 8,,(n) and the values DT, (6,x(n)) approximate the
points of discontinuity 8,, and the jumps [g} of a function g.

5.1. Approximation to the points of discontinuity. Let us first consider the worst
possible case.

Theorem 4. Let p = 0 and r € N be fized, and suppose g € HBV is a function with a
finite number, M, of discontinuities. Then the estimate

(27) Brn(n) = O + ——eo( =

AENOMSL
1s valid for each fized m =0,1,... , M - 1.

Proof. Without loss of generality let us make several assumptions. We assume that
M =2 and r = 2r+1 is an odd number. The points of jump discontinuity of the function
g are 6y = 0 and 6,. We shall prove estimate (27) for 6, as it is completely analagous for
6, by virtue of the periodicity of g.

Now let us set

(28) 70) = o(0) - Loc(0) - Dic(a;0).

™
It is obvious that

(29) ge CNHBYV,

since continuity of g follows from (28). Moreover, since G € V C HBV and HBV is a
linear vector space (see [23, p. 108]), § € HBV as well.
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Besides by virtue of (11), (13), and (28)
DT.(g;6) = [9] Yo pr (6:8) + [9] Y% b1 (G(8y;-);8) + DT.(5;6)

1) (2r+1 (2r
_ ¢ @+ Didl g

( 1y (527;: 1igh D)@ — 6,) + DT.(5;9)

(30) = Io(n;8) + Ii(n;0) + ER(n; 6).

It is obvious that |Io(n; §)| attains the global maximum at § = 0 and without I;(n;§)
and ER(n;8) terms we could ezactly locate the discontinuity point fo = 0 just searching
for the global maximum of |DT,(g;8)| on the period. By virtue of (29) and Remark 2,
ER(n; 8) contributes a small error independent of 8 € [—m,7],i.e., ER(n;8) = o(1). But
according to (14) and (30)

-1)"(2r lsinnl—1(2r)
hinyg) = S+l ( ((n+ )0 e)))

n2rtl 2sin 9;291

- (i Ch(n+ 3 ) sin((n+ )6~ ) + )

g (2r_k) t(n+t ) sin((n+3)6—6:)+ r1r))
2sin %’- 2 2sin —Tal
[g]1
31 =
(30 Al9)
as well for 6 € B(0; A(g)). Hence
(32) en = || i(n; ) + ER(n;)ll-a).a0) = (1)
Consequently, by virtue of statement e) of Lemma 4 and (32), we have
(33) [To(n; 0)] — € > |To(n; ¢n)| + €n

for sufficiently large n € N. But (33) combined with (12), (30), and statements a) and
e) of Lemma 4 already guarantees

s
6 n < —
[Bo(n)] < @ < —

for sufficiently large n € N.
Next, to achieve a more accurate estimate, namely (27), we use a simple estimate of a
root of an equation.

First, let us mention that since fp(n) is the extremum point, then

(34) DT, (g;680(n)) = 0,
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which itself implies (see (30))
(35) Io(n; 66(n)) = —I1(n; 6o(n)) — ER (n; 8o(n)) = Tu(Bo(n)),

where T, is an n-th degree trigonometric polynomial.
According to estimate (32), (35), and Lemma 2 we have

(36) | Tall - ae).a00 = Alg )0(71)

Let us assume for simplicity that [g]o > 0. Furthermore, we know Ij(n;6) is odd
decreasing and convex on [—pn(r +1),0] and concave on [0, p.(r +1)]. (See statement d)
of Lemma 4.) Hence the line passing through the points (+@a(r + 1), Iy(n; £eq(r + 1))
will occur below the positive part of the function Iy(n;8) and above its negative part.
So, for sufficiently large n € N, 8o(n) will satisfy the inequality

(37) 16o(n)] < [Bo(n)],

where 8y(n) is the solution of the following equation
Io(n; a(r + 1))

3 6 = T,(6).

(38) ' Pn(r +1) @)

Here the left hand side of the equation represents the above mentioned line.
Hence, by virtue of (11), (13), (30), (36), and statements a) and c) of Lemma 4, we
obtain

~ 1 1
6o(n) = ———o( =),
o) = Gralg )
which combined with (37) completes the proof. O
Let us now consider a more typical case.

Theorem 5. Let p = 0 and r € N be fized, and suppose g is a piecewise continuous
function such that ¢ € HBV. In addition, we assume that M(g) and M(g') are finite.
Then the estimate

1 1 1
(39) Om(g;n) = Om(g )+E]— ([g] ( ) Ry 0) Z[g]k0(§)>

k#m
is valid for eachm =0,1,... ,M(g) — 1.

Proof. Again for simplicity let us assume that M(g) = 2, M(g') =1, r=2r + 1 is
odd, and 6o(g) = 6o(g') = 0. Furthermore, let us introduce a function § now via the
following identity:

(40) 5(0) = 9(0) = 7 2 [01nG(0ri8) — ZaGs(6).
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Since the conditions of Theorem 5 in particular imply the conditions of Theorem 4, by
similar arguments we conclude that 6o(n) satisfies the estimate (37), where fo(n) is the
solution of equation (38) now with

T(6) = —L(n;6) - (I§") (n;6) — ER (n;6)
(a1) = o (66, 36 - Lor(61i0) - DTL(5:0)

Hence, to complete the proof it is enough to estimate T',.

By the construction § € C N HBV (see (29)). Consequently, according to (11), (41),
and Remark 2

(42) IER (n; )ll=rmy = o(1). -

The estimate for I; directly follows from (31). Namely,

(43) 1L (m; M-8 = A7 O(1).

lg]1
Alg)

As regards I§", by virtue of (11), (13), (15), and (41) we have
(44) 1™ (73 M= = 191001

The combination of (37), (38), (41)-(43), and (44) completes the proof. [

Now we turn our efforts to study probably the most interesting case: a 2w-periodic
piecewise smooth function with one jump discontinuity. As expected, the approximation
in this case is significantly more regular. Namely, the following statement holds.

Theorem 6. Let p = 0 and r € N be fized, and suppose the function g piecewise belongs
to C9, q > 2, and has a single discontinuity at 8y € (—7,7). In addition, we assume that
g9 € V. Then there ezist constants K,, Ks,... ,K, such that

K, K, K,

(45) Go(r; n)—60+——+—+ qul+ of qul)

Namely

(46) K1=r+2m(1 and K2=—T+2-[g—]0
r [glo r (gl

forr 2> 2.

In particular, if the derivative of the function g does not have a ]ump at 0y, then the
approzimation has the order O(1/n*).
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Procf. Let us first assume that r > g. We shall establish an algorithm for computing
the constants K;, K,,... ,K,, and perform the actual computation for K; and K.

Without loss of generality we assume that o = 0,7 =2r +1, and ¢ = 2¢g+ 1. Now we
consider the function g defined by

2q+1

(47) 3(6) = 9(6) — — Z [9M10G(8)-

T k=0

Since the function g in particular satisfies the conditions of Theorem 5, by virtue of
(39) there exists a constant Ko such that

K,
(48) |6o(n)] < —0
forn € N.
As we know (see (34) and (47)), 6o(n) satisfies the following identity
’ 1 2q+1 ’ }
(49) DT,(g;80(n)) = — 3 [§10DT,(Gr; 6o(n)) + DT, (33 bo(n)) =
k=0

By construction §**1) € C NV C CN HBV. Hence by Remark 2 and Lemma 2 we
have

(50) S'r(127+2)(§; 0) = S£2r+1—2q)(§(2q+1); 6) = o(n2r+1—2q)
uniformly with respect to § € [—m,x].

Furthermore, expanding expression (49) into a Taylor series around zero on the interval
[—Ko/n?, Ko/n?] and taking into consideration (11), (13), (48), and (50), we obtain:

[g1o(DE(0)u(n) + 5 DEI(O)8o(m)’ + 5 DErO(0)do(m) +

5!
1 (2K,)%*?
(29+2r+3) 0
METET)] DI o) o)
' 1
+lg To(D7(0) + 5D (0)0o(n) + 5 DYF(0)do(n)" + ..
1 (2K, )%*?
(2¢+27+1 Y
(2 +1)ID ? )( ) ey nde+2 )

r_ , 2K,
n [g(2q+1)] (D(Z 2q)(0)+D(2 +1- 2Q)(P2q+1n) ]

(51) + o(n*T17¥) =0,

where |urn| < Ko/n?, k=0,1,... ,2¢+ 1.
1t follows from (15) that all error terms in the Taylor expansion have order O(n? ~%9).

)
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The expression for D{)(0), 7 € Z,, (see (15)) suggests seeking an expression of 8o(n)
in the form (45).

According to equation (51), since the error term has an order o(n? =291}, all coefficients
of n*, k > 2r — 2¢ + 1, must equal to 0. This condition generates the set of equations
with respect to the yet unknown constants Ky, K, ... , Kzg41-

We set up one by one the equations for powers of n, with decreasing order of de-
gree, starting from n?*!. It is clear that by (15) and (51), only two terms, namely
[9]oD +2(0)80(n) and [g']oD{*”(0) contribute n?"*! and n?”. Consequently, the com-
parision of the coefficient leads to the following system of linear equations with respect
to K; and K, (see (14), (15), and (45)):

2r+3 K 2r41
1yl n 1 1Y [ 7
(-1 [9]02r+3_n2 +(-1) [g]o2r+1

and

n?.r

2:

i1 n2r+3 KZ n2r+2 K] -
(-1 lal (g + gt ) + (Dl
which instantly implies (46).

Furthermore, let us observe that the highest degree of n contributed by each term of the
sequence @Q; = (D@ +2-20(0)8y(n)¥—*~1)2!, I = 1,2,... ,q + 1, ignoring the constants
of expansion, is 2r — 21 + 3.

Now we proceed by induction. Let us assume that the constants Ki, Ky, ..., Ky-3,
and Ky, are already defined by setting up equations with respect to the coefficients of
n degree less then 2r — 2(! — 1) + 3. Next, we shall show that a new system of equations
for the coefficients of n?"~%+3 and n?" 242 represents a system of linear equations with
respect to Ko—; and Ky. In addition, the determinant of the system is nonzero, and
hence the system is consistent.

Indeed, the only terms which may contribute Ky, and Ky unknowns are in the
sequences @;, j < {. Hence, by (15) and (45) we have

( n2r+23-21+1

0,

D512r+2j—2i)(0)60(71)25—"—1 + lower degree terms)

2r+25—-21+41
K, Ko-1 | Ky 1\ ¥
(52) X (F Tt T + n2i+1 O(n21+2 )) :

Consequently, the highest degree of n contributed by this product with factor Ky_; is

n2r+2]—21+1 (E) 27—1=2 K21_1 N nzr—2l+3+2(1—j)

2r 4+25 —2i+ 1 \ n? n? )
But, 2r — 20 + 3+ 2(1 — j) < 2r — 2l + 3 unless § = 1. Hence only the sequence
Q@ = {D**+2(0)8p(n), DI*"}(0)} contributes the constant Ky_; and it clearly appears
in the first degree in the expression for 6o(n). (We treat the case for Ky similarly.) In
addition, the determinant of the linear system with respect to K31 and K5 is triangular
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with nonzero diagonal entries, (—1)"*![g]o/(2r + 3) # 0 and (—1)"*{glo/2 # 0, and that
guarantees the solvability of the system.

Finally, the equation for n?"~2+3 defines Ky_i, so the equation for n?"~2¢t1 will
define K3.+;. Let us mention that the coefficients K, K2,... , K2q41 depend only on
9o, [0 - - - » [§%* Vo

To prove the theorem for the case r < ¢ we need some minor changes in the arguments.
First, one has to use expansion (16) for D{¥"+%-2%}(0) in estimate (52) as soon as 2r +
27 — 21 < 0. Second, to estimate the error term in (49), i.e., (50), let us mention the
following: since §(*"+2) € C29-2"-1  then by virtue of (17), expanding § into Taylor series
around zero on the interval [—Ko/n?, Ko/n?], we have:

SE g o(m) = Sul@H; Bo(n) = 35D Bofm) + o gramey)
= gC(0) +5+(0)6o(n) + -
1 _ (2 )2q-—2r—-1 1
(53) ool ) e o)

which, ignoring the constant factor, represents the desired estimate for the error term.
The rest of the proof is completely analogous. [

Taking an opportunity of the lucky similarity between the coeflicients (46), using a
simple linear combination of expansion (45) for ¥ and r, 2 < ¥ < r, we significantly
improve the accuracy of approximation. Namely, the following statement holds.

Corollary 3. Let p = 0 and suppose a function g piecewise belong to C?, q¢ > 3, and has
a single discontinuity at 8y € (—m, 7). In addition, we assume that g9 € V. Then for
each fited ¥ andr € N, 2 <7 < r, there ezist constants K1, K, ... , K, such that

r(F +2 (r + 2 . K, K, 1
E ; E ;00( m)=Oo+ X4+ to(—n)

5.2. Approximation to the jumps. Now let us study the approximation to the jumps
of a function.

(54) fo(r;n) —

Theorem 7. Let p = 0 and r € N be fized, and suppose g is a piecewise continuous
function such that ¢ € HBV. In addition, we assume that M(g) and M(g') are finite.

Then the estimate
1
DT.(g:8m(n)) = lglm + O(-)

is valid for eachm =0,1,... ,M(g) — 1.



LOCATING DISCONTINUITIES 18

Proof. Again for simplicity we assume that M(g) =2, M(¢g') = 1,7 =2r + 1 is an
odd number, and 8o(g) = 8o(g') = 0. By virtue of (40) we have

DTo(gibo(n) = 2DT,(G;60(m)) + L2 DTL(G(6s; ); bo(m))

(55) +[—9%DTn(G1; 8o(n)) + DT,(§; 6o(n))

Further analysis is trivial as we take the Taylor expansion of (55) around zero on the
interval [—Ky/n?, Ko/n?]. By virtue of (11) and (13) we get
-1y (2r + 1)[g . ., 2K,
DTn(g;eo(n)) = (1) (n2r+1 J (D£z2 )(0)+DSL2 H)(Vn _n‘r;q)
(=1)(2r + 1)[gh
n2rt+l

-1 (2r + D[g]o n(ar_1
( ) (ngr.H )[g] DSL )(00(,”))

(=1)7(2r + )7

(56) + n2rtl Sftzr)(gl; 00("’)):

D7 (6o(n) — 61)

where |v,| < Ko/n?.

Taking into account that § € C N HBYV, the rest of the proof follows from (14), (15),
(31), (56), and Remark 2. O

Now, an interested reader will easily fill out the details of proof for the following
statement.

Theorem 8. Let p = 0 and r € N be fized, and suppose a function g peicewise belong to
C9, q > 2, and has a single discontinuity at y € (—7, 7). In addition, we assume that
g9 € V. Then there ezist constants K, Ko, ... , K, such that

Bl m)) = K, K K, 1
(57) DT (r; bo(r;n)) = [9]0+ —;+¥+---+ ;-}-O(;;).
Namely
(58) Ki = Zlglo
and
r? r+2 r+2[g)3

Kz = 5lglo+ g0 — — e

forr > 2.

Extrapolating expansion (57) in r based on identity (58), we improve the accuracy of
aproximation. Namely, the following statement holds.
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Corollary 4. Let p = 0 and suppose a function g piecewise belong to C9, ¢ > 2, and has
a single discontinuity at 6y € (—m, 7). In addition, we assume that g9 € V. Then for
each fized ¥ andr € N, 2 <7 < r, there exist constants K1, K,, ... ,K, such that

K,

(59) (m)) =~ DTa(r;Bu(m)) = lglo+ 2+ ..+ % + o).

5.3. Approxnmatlon to the discontinuities and the jumps of derivatives of a
function. As a simple corollary of (8), (9), (10), and Theorems 6 and 8 we obtain
estimates for the location of points of discontinuity of the derivatives of a continuous
function and the associated jumps. Below we represent just typical statements.

Theorem 9. Let a function g € C?71, p € N, piecewise belong to C?, p+2 < g, and
suppose gP) has a single discontinuity 8, € (—n, 7). In addition, we assume that g9 € V.

Then for each fized v € N there exzist constants K1, K,,... ,K,_, such that

K, 1
(60) g (P, :gvn) - oo(g(p)) + + -t ni- P+1 + ( g-p+1 )
Namely,
- (p+1) - (p+1)
K ="—2t20" 0 g, o TP t2[0%
r—p [9® r=p  [9®

forr —p>2.

Theorem 10. Let a function ¢ € CP~!, p € N, piecewise belong to C9, p+ 2 < gq,
and suppose g'P) has a single discontinuity 6y € (—7,7). In addition, we assume that
g9 € V. Then for each fized r € N, there ezist costants K1, K>, ... ,K,_, such that

K K, 1
DT(pir;g:bo(pimigin)) = [gP]o + == + ...+ =2+ o( ).

nd—>r ni-»

Namely,

K, = p[g(p)]o

forr—p>2.

6. DESCRIPTION OF THE ALGORITHM

Now we describe the main idea of the algorithm which we propose to locate the points
of discontinuity. For simplicity, we assume that the function is piecewise smooth.

In case the function has a single discontinuity, according to Corollary 3 we search for the
global maximum of | DT,(8)| for fixed 7 and r, 2 < 7 < r. Afterwards, utilizing expansion
(54) and applying Richardson’s method of extrapolation we improve the accuracy.

The situation drastically changes if the function has more than one point of disconti-
nuity. In this case we do not have expansion (54) for the approximation.
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To overcome this difficulty we generate, for a fixed r € N, the sequence of partial sums
of Fourier series of functions (g, )21, defined via the recursion relation

(61) gm+1(6) = (1 —cos (6 - eo(gmin)))dgm(a):

where go = g, d € N is fixed, and 8y(gm;n) is the location of |DT,(gm;8)|’s global
maximum on the period for sufficiently large n € N.

The idea behind generating this sequence is to “eliminate” (at least numerically) the
discontinuities of the function g one by one by simply searching for the global maximum
of the function |DT,(gm; )| on the period. In other words, “removing” the highest jump
of the function, we can see the second largest jump.

A straightforward computation based on simple trigonometric identities generates the

Fourier coefficients of gm41 via the Fourier coefficients of g,,. Below we represent the
identities for d = 3 (see (61)):

5
a'k(gm+1) = :?"a'k(gm)

15 15 |
- _8_ cos 90(.9m; n)(ak-—l(gm) + ak+1(9m)) + ? sin ao(gm;n)(bk—l(gm) - bk+1(9m))

43 cos 2o(gmin)(as-2(gm) + ak+2(0m)) ~ 3 53 20(9mi ) (Be-a(m) = is2(gn)

(62) — % cos 30o(gm; n)(@x—3(gm) + ar+3(gm)) + % sin 300(gm; n)(bk-3(gm) — br+3(gm))s

and
5
be(gm+1) = Ebk(gm)
15 15 .
= ©0800(gm; n)(be-1(gm) + bia(gm)) — =5 50 Bo(gmi n)(ak-1(9m) = Bkt1(gm))
2 c0s260(gmi ) (beca(om) + Bes2(gm)) + i 260(3mi 0)(@k-3(gm) = ait2(9m)
(63) — & c08300(gmin)(bi-s(gm) + bess(gm) ~ 5 i03o(gmi m)(@-s(gm) — axs(gm)),

where ai(gm+1) = a-k(gm+1) and be(gm+1) = —b_k(gm+1), k € N.

Our approach to eliminate the points of discontinuity could be justified by the following
observation: multiplying a function by the factor (1 — cos (8 — 8o(gm;n)))? we are not
adding a new point of discontinuity but significantly reducing the jump of the function
gm at 8,,. More precisely, if 8,, — 8(gn;n) = O(n~?), then the function gnm41 (see (61))
at the point 6,, will have the jump of (1 — cos (6, — 6o(gm;7)))%[gm+1]o = 2% (g, 110

Figures 5-7 illustrate a step by step “elimination” of the points of discontinuity of
the function (65) utilizing formulae (62) and (63). They correspond to the graphs of
15, (gm; ) for m =1,2,3.
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FIGURE 7. n = 128.

Summarizing all the above we suggest the following algorithm, which we have imple-
mented using Mathematica:

Steps 1-3 find initial approximations for the discontinuities of the function g. These are
then refined in Steps 4-5.
Step 1 (Initialization):
Select some fixed d € N, which will be used throughout the entire algorithm.
Let » = 1; this value is used in defining DT,,(gn;6) in Steps 2 and 3. Let 2n, +1
coefficients of the function g be given. Select some small value for ng (usually
no = 16); this value should be a power of 2 and is used as the starting subscript
of the sequence constructed in Steps 2a and 2b. Let m = 0 and gy = g.
Step 2 (Find a discontinuity, if one exists):
Step 2a (Find the maximum of |DT,(gn;8)| over the period):
Step 2a(1): Using the adaptive plotting routine internal to Mathe-
matica, with the number of initial points set at the maximum of 25
(the default) and n} (to ensure that we do not miss the maximum),
determine the point constructed by the plotting algorithm which has
the largest value of | DT, (gm;6)|.
Step 2a(2): Using the #-value of the point found in Step 2a(1), ap-
ply Newton’s method to find the #-value where the maximum of
| DT, (gm; 6)] occurs as the solution of the equation DT, _(gm;8) = 0.
Let us denote the §- and corresponding| DT, (gm; 8)|-value by 6(n,)
and 7(ng).
Step 2b (Determine if the #-value found in Step 2a is a discontinuity):
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Form the sequences 8(nq), 8(2no), 8(4no), ... and 7(no), 7(2no), T(4n0),

. by successively doubling ng and finding the maximum of | DT,(g,.; 8)|.
Find the maximum by using Newton’s method, using the previous #-value
in the sequence as the initial approximation.

Stop when one of three conditions arises.
Condition 1: The ratio of two successive 7-values is less than 0.6
(see (57)). The point is not a point of discontinuity. Go to Step 4.
Condition 2: The estimated relative error between two successive
@-values is less than some predefined tolerance. The point is a point
of discontinuity. Go to Step 3.
Condition 3: The number of terms in DT, (gm;8) exceeds 2n;. The
point is a point of discontinuity. Go to Step 3.
Step 3 (Remove the discontinuity):
Let 6,, denote the final value of # determined in Step 2b. Increase m by 1,
define the Fourier coefficients of the function gm+1(8) = gm(8)(1 — cos(6 — 6,,))¢,
utilizing (62) and (63), and return to Step 2.
Step 4 (Refine the estimates of the points of discontinuity):
Two conditions can arise: no discontinuities were found in Steps 2 and 3 (termi-
nate the algorithm) or one or more discontinuities were found (continue). Let M
be the number of located discontinuities and 6y, 6y, ... , 6p_; their locations.

Select some 2 < 7 < r and some n > ng, n = 27, to be used in Step 4a.

Do the following for m =0 to M — 1.

Using the values of §,, current at the time form the function

g..(8) = g(8) T1M;3 em (1 — cos(f — 6;))?, and apply the extrapolation

method of Step 4a.

Step 4a:

Form the sequences 0(;ng), 6(7; 2no), 8(7; 4no), ... , 8(F; n) and 6(r; no),
0(r; 2ng), 8(r4ng), - .. , 6(r;n), which represent the §-values where | DT,(g},; 6)]
takes on its maximum value. This can be done efficiently by using New-

ton’s method with 0,, as the starting point and solving the equation
DT,(g;,;6) = 0.

Using the extrapolation defined by equation (54), form the sequence

8(r) = 5 Dg(rim) — Kt Dotz
for n = ng, 2ny, 419, ..., n.

Perform Richardson’s extrapolation on the sequence 8(nyg), 6(2no), 6(4no),
, 6(n).

Replace 8,, with the final value obtained.
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Step 5 (Additional refinement of the estimates):
If only one discontinuity was detected in Steps 1-3, then stop. Otherwise repeat
Step 4 a second time.

Our implementation uses Mathematica’s capability to do high-precision arithmetic
and track the loss of precision that occurs due to accumulating roundoff error. Besides
displaying the final answers it displays the number of digits of precision that remain.

7. SOME NUMERICAL RESULTS

In order to illustrate the numerical results obtained by the described algorithm, we
will consider several examples.

First we consider a 27-periodic function g with two discontinuities such that g € HBV,
namely '

@) =10 if —r<8<0
PR = 6sinl+2 ifOo<b<nm

It is obvious that the function g is not piecewise absolutely continuous and therefore
the methods suggested in [4], [5], and [11] fail. Still according to Theorem 2 we should
obtain an o(1/n) approximation. We find the absolute value of the largest error for
approximation to the points of discontinuity as follows:

N 32 64 128 256
6.1(—2) | 2.2(—2) | 6.4(—3) | 2.0(=3)

Location-error

The following piecewise smooth function was considered in [5].

g(9)={ sin & 9 if0<6<09

(64) —sin§ f09<f<2n

Below we present a detailed description of all computations. The first table shows the
error in the approximation to the location of the discontinuity by differentiated Fourier
partial sums of degree r = 7 and r = 8, and then their linear combination via formula

(54).

N |[r=7 r=28§ linear combination by (54)
3 [2.42(—1) ] 2.40(=1) | 1.82(—1)
I [6.84(=2)[6.70(—2) | 1.90(—2)
8 [ 1.86(—2) | 1.81(—2) | 1.50(3)
16 [2.90(=3) | 4.76(—3) | 1.06(—4)
32 [1.26(=3) | 1.22(—3) | 7.05(—6)
64 [3.10(—2) | 3.11(—4) | 4.54(=7)
128 [ 8.05(—5) | 7.83(—5) | 2.88(=8)
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Here we present a full table of Richardson’s extrapolation started from the last column
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of previous table.

r=1,8

1.8(=1)

1.9(=2)

8.0(=3)

1.5(—3)

3.4(—4)

8.9(—5)

1.0(—4)

1.2(—5)

2.3(—6)

9.2(—7)

7.0(—6)

4.4(—7)

16(—8)

1.0(—8)

3.6(—9)

15(=7)

1.4(=8)

8.2(—10)

9.6(—11)

1.2(—11)

1.8(—12)

5.8(=8)

2.7(—10)

1.3(=11)

T7(=13)

2.2(—14)

2.5(—14)

2.1(—14)

The following is the error in the approximation to the jumps of the function using

r =T and r = 8, and their combination (59).

r=17T

r=28

linear combination by (59)

2.86(0)

3.35(0)

5.60(—1)

T.04(0)

1.22(0)

1.74(-1)

oo»mz

4.46(—1)

5.17(—1)

455(=2)

2.20(—1)

2.37(—1)

1.14(—2)

32

9.90(—2)

1.13(=1)

3.87(—3)

64

4.85(=2)

5.55(—2)

7.18(—4)

128

2.40(=2)

2.74(—2)

179(—4)

This table is Richardson’s extrapolation applied to data above.

r=1,8

5.6(=1)

1.7(-1)

15(=2)

4.5(—2)

5.6(—3)

3.5(—3)

T1(—2)

1.2(—4)

2.2(—4)

1.1(=5)

5.3(—3)

3.9(=6)

1.4(=5)

11(=7)

6.1(—8)

7.1(=4)

4.4(=7)

5.3(=7)

11(=3)

1.7(=9)

2.7(=9)

17(=2)

1.0(—7)

5.8(—8)

3.0(—10)

5.6(—11)

2.9(—11)

8.3(—12)
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The next example has been considered in [11].

0 if0<8<1,
e’ ifl<8<L2,

COos 2

0 if 5 <6 < 2r.

Applying the suggested algorithm the following results have been obtained. Here we
simply present the largest error in approximating any of the three discontinuities.

N 32 64 128 256 512
Location-error | 1.7(—4) [ 6.1(—7) | 1.4(—8) | 3.5(—11) | 9.7(—14)

8. CONCLUSION

Let us give some comments on our results.

As we already mentioned, the formula which determines the jumps of a bounded not-
too-highly oscillating function by means of its Fourier series has been known for a long
time. But to our best knowledge it has never been utilized for a numerical approximation
of the locations of discontinuity points.

Theorems 2 and 3 state that it is possible to detect the locations of discontinuities
and the jumps under the condition that a bounded function does not have too high
total oscillation (condition (6)). On the other hand, Fourier series fail to distinguish a
continuous functions from discontinuous one, if the function is too highly oscillating (the
necessity of condition (6)).

It follows from Theorem 4 that identities (5) and (7) represent a powerful tool for the
allocation of the points of discontinuity of an almost arbitrary function - excepting the
minor restriction on the variation of the function and a finite number of discontinuities we
impose no conditions. Still the approximation is of order o(1/n). The factor ([g]mA(g))~?
confirms a logical observation: the smaller the jump of a function and the distance
between the points of singularity, the more difficult it is to detect its location.

Taking into consideration asymptotic expansions (45), (54), (57), and (59), we think
that the method is best suited for a piecewise smooth function with a single discontinuity,
although applying the suggested method of “removing” discontinuities leads to good
results for a function with multiple discontinuities too.

For piecewise smooth functions, we can obtain very high orders of approximation. The
numerical results confirm that high accuracy is indeed attainable with fairly low degree
trigonometric polynomials.

Regarding numerical results, applying expansion (54) for different pairs, we observed
higher accuracy for larger values of r. For instance, the accuracy of the location of
discontinuity is only order of 10~° for the function (64) applying (54) and Richardson’s
extrapolation for » = 2,3, and n = 128. Numerical results confirmed priority of expansion
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formula (54) over (45): we gained three digits of accuracy. It should be mentioned as
well that increasing the order of the partial sums we obtained better results: for the same
function (64) using expansion (54), r = 6,7, combined with Richardson’s extrapolation
for n = 512 we achieved an accuracy of 1072 for the location of the point of discontinuity.
The numerical results were obtained from a program written in Mathematica, which is
available online through the third authors home page http://www.cs.unm.edu/ shapiro/.

REFERENCES

1. S. Abarbanel and D. Gottlieb, Information conient in spectral calculations, Progress in Scientific
Computing, Vol. 6 (Proc. U.S.-Israel Workshop, 1984) (E. M. Murman and S. S. Abarbanel, eds.),
Birkhauser, Boston, 1985, pp. 345-356.

2. S. Abarbanel, D. Gottlieb, and E. Tadmor, Spectral methods for discontinuous problems, NASA-
CR-177974, ICASE Report no. 85-38, also in Numerical methods for fluid dynamics I, Proc. Conf.
(Reading, 1985) (K. W. Morton and M. J. Baines, eds.), Clarendon Press, Oxford, 1986, pp. 129-153.

3. T. M. Apostol, Iniroduction to analytic number theory, Springer-Verlag, New York, 1976.

4. N. S. Banerjee and 1. F. Geer, Ezponentially accurate approzimations to pertodic Lipschilz functions
based on Fourier serties partial sums, under preparation.

5. W. Cai, D. Gottlieb, and C.-W. Shu, Essentially nonoscillatory spectral Fourier methods for shock
wave calculations, Math. Comp. 52 (1989), 389-410.

6. G. F. Carrier, M. Krook, and C. E. Pearson, Funciions of a complez variable-theory and technigue,
McGraw-Hill, New York, 1966.

7. E. Coutsias, personal communication.

8. P. Csillag, Korldtos ingadozdsi figgvények Fourier-féle éllanddirél, Math. és Phys. Lapok 27 (1918),
301-308.

9. 1. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New
York, 1980.

10. K. S. Eckhoff, Accurate and effictent reconstruction of discontinuous functions from iruncated series
ezpansions, Math. Comp. 61 (1993), 745-763.

11. K. S. Eckhoff, Accurate reconsiruciions of functions of finite regularity from truncated Fourier series
ezpansions, Math. Comp. 64 (1995), 671-690.

12. L. Fejér, Uber die Besitmmung des Sprunges der Funktion aus ihrer Fourierreike, J. Reine Angew.
Math. 142 (1913), 165-188.

13. J. Geer, Rational trigonometric approzimations using Fourier series partial sums, J. Sci. Comp. 10
(1995), 325-356.

14. J. Geer and N. S. Banerjee, Ezponentally accuraie approzimalions to piece-wise smooth periodic
functions, ICASE Rep. No. 95-17.

15. B. I. Golubov, Deiermination of the jumps of a function of bounded p-variation by its Fourier series,
Math. Notes 12 (1972), 444-449.

16. D. Gottlieb, Spectral methods for compressible flow problems, Proc. 9th Internat. Conf. Numer.
Methods Fluid Dynamics (Saclay, France, 1984) (Soubbaramayer and J. P. Boujot, eds.), Lecture
Notes in Phys., vol. 218, Springer-Verlag, Berlin and New York, 1985, pp. 48-61.

17. D. Gottlieb, L. Lustman, and S. A. Orszag, Spectral calculations of one-dimensional inviscid com-
pressible flows, SIAM 1J. Sci. Statist. Comput. 2 (1981), 296-310.

18. D. Gottlieb and C.-W. Shu, On the Gibbs phenomenon V: recovering ezponential accuracy from
collocation point values of a piecewise anclylic function, Numerische Mathematic 71 (1995), 511-
526.

19. Y. Katznelson, An introduction to harmonic analysis, Second ed., Dover, New York, 1976.



LOCATING DISCONTINUITIES 29

20. G.Kvernadze, Determination of the jumps of a bounded function by its Fourier series, J. of Approx.
Theory, to appear.

21. S. M. Lozinski, On a theorem of N. Wiener, Soviet Math. Dokl. 53 (1946), 687-690.

92. S. Perlman and D. Waterman, Some remarks on functions of A-bounded varigiion, Proc. Amer.
Math. Soc. 74 (1979), 113-118.

23. D. Waterman, On convergence of Fourier series of functions of generalized bounded variation, Studia
Math. 44 (1972), 107-117.

24. N. Wiener, The quadratic varistion of a function and its Fourier coefficients, J. Math. Phys. 3
(1924), 72-94.

DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NEwW MEXICO, ALBU-
QUERQUE NEw MEXico, 87131
E-mail address: gkverna@math.unm.edu

ICOMP, NASA LEwIis RESEARCH CENTER, CLEVELAND, OH, AND DEPARTMENT OF MATHE-
MATICS AND STATISTICS, THE UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87131
E-mail address: hagstrom@math.unm.edu

DEPARTMENT OF COMPUTER SCIENCE, THE UNIVERSITY OF NEw MEXICO, ALBUQUERQUE, NEW
MEeXico 87131
E-mail address: shapiro@cs.unm.edu



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, inctuding the time for revi ing existing data sources,
gatmringlndmammngmdmmwod andcomuotma:nd roviewmmeeolledbn of information. Smdmm:wmgmuwmmmornnymmmdms
coflection of information, including for ing this b , to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Minglon VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.
1. AGENCY USE ONLY (Leavs blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Locating the Discontinuities of a Bounded Function by the Partial Sums of its

i ies I: Periodical Cas
Fourier Series I: Periodic e WU-538-03-11-00

6. AUTHOR(S) NAG3-2014

George Kvernadze, Thomas Hagstrom, and Henry Shapiro

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of New Mexico

Albuquerque, New Mexico 87131 E-11018
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Lewis Research Center NASA CR—97-206534
Cleveland, Ohio 44135-3191 ICOMP-97-13

11. SUPPLEMENTARY NOTES
George Kvernadze, University of New Mexico, Departinent of Mathematics and Statistics, Albuquerque, New Mexico

87131; Thomas Hagstrom, Institute of Computational Mechanics in Propulsion and University of New Mexico, Depart-
ment of Mathematics and Statistics, Albuquerque, New Mexico 87131 (partially funded by NSF Grants DMS-9304406
and DMS-9600146); and Henry Shapiro, University of New Mexico, Department of Computer Science, Albuquerque,
New Mexico 87131. ICOMP PMI Director, Louis A. Povinelli, orgamzauon code 5000, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category: 64 Distribution: Nonstandard

This publication is available from the NASA Center for AcroSpace Information, (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

A key step for some methods dealing with the reconstruction of a function with jump discontinuities is the accurate
approximation of the jumps and their locations. Various methods have been suggested in the literature to obtain this
valuable information. In the present paper, we develop an algorithm based on identities which determine the jumps of a
2n-periodic bounded not-too-highly oscillating function by the partial sums of its differentiated Fourier series. The algo-
rithm enables one to approximate the locations of discontinuities and the magnitudes of jumps of a bounded function. We
study the accuracy of approximation and establish asymptotic expansions for the approximations of a 2n-periodic
piecewise smooth function with one discontinuity. By an appropriate linear combination, obtained via derivatives of
different order, we significantly improve the accuracy. Next, we use Richardson’s extrapolation method to enhance the
accuracy even more. For a function with multiple discontinuities we establish simple formulae which “eliminate” all
discontinuities of the function but one. Then we treat the function as if it had one singularity following the method

described above.

14. SUBJECT TERMS . 15. NUMBER OF PAGES
. . . . . . . _ 35
Locating discontinuities; Fourier series; Asymptotic expansion 16. PRICE CODE
— __A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102



